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I. Introduction

The requirement to transmit ever increasing amounts of data between

various points has, over the years, posed at least one major problem---

how to economically expand data transmitting and receiving facilities in

order to provide the necessary data handling capabilities to meet the

requirement. In this light, space vehicle telemetry systems have re-

cently undergone considerable investigation of the problem. The most

direct approach, of course, is to increase the communications link

capacity. However, in many applications, particularly space vehicle

telemetry systems, the cost of this approach very rapidly becomes pro-

hibitive. A less direct but more economical approach is the use of data

compression, which can reduce bandwidth and/or time requirements so that

a greater volume of data can be transmitted over existing facilities.

Implementation of most of the data compression algorithms of interest

dictates the need for a system which realizes three basic functions---

memory, control, and arithmetic. Since each of these functions is inherent

in a digital computer, the question of implementation often reduces to the

selection of special purpose (SP) or general purpose (GP) hardware and

the associated software.

The purpose of this report is to present a study of a special case,

namely, implementation of data compression aboard the proposed space shut-

tle and to draw conclusions as to which type of digital computer (SP or GP)

would be best for this application.
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II. Data Compression Algorithms

A. General Information

There is quite a large number of data compression techniques, or

algorithms, available. Usually they are referred to as "redundancy re-

moval" algorithms, being classified according to the order of the al-

gorithm. Redundancy exists when there is an insignificant change between

successive data samples, or among several samples. In order to determine

sample redundancy, it is common practice to monitor a particular derivative,

since a derivative is generally associated with change. The order of the

derivative chosen thus determines the order of the particular algorithm.

For space telemetry systems, consideration is generally given to

four algorithms---zero-order predictor, zero-order interpolator, first-

order predictor, and first-order interpolator. Although this report is

not primarily concerned with the analysis of the various data compression

algorithms available, a few descriptive remarks are in order.

In general, the higher the order of the algorithm the more compli-

cated it becomes. It might also be noted that interpolators are more

complicated than predictors. However, all algorithms are similar in

that they use one or more previous data points to establish a reference

"corridor" inside of which future data samples are expected to lie. If

it is determined that a subsequent sample falls outside of the corridor

boundaries, then this sample is said to be non-redundant, and it is used,

alone or with other samples, to determine the boundaries of a new refer-

ence corridor. It is this non-redundant sample that carries the most
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useful information, therefore, a system is desired that will analyze

input data samples and reject or discard redundant samples, while trans-

mitting all non-redundant samples.

Naturally, when the waveform is reconstructed there is going to be

some error due to the elimination of redundant data. This error will,

quite obviously, vary with both the input data or waveform and the type

of compression algorithm employed. The RMS error is quite often used

as one of the major performance criteria.

Another major criterion is the compression ratio which a particular

algorithm realizes. The compression ration is defined by the equation

CR = Si
S
0

where CR is the compression ratio, Si is the input sample rate, and SO

is the average output sample rate. This definition makes CR proportional

to the sampling rate, hence two tests which differ only in sampling rate

might well yield conflicting compression ratios. Further complicating

matters is the fact that the number of non-redundant samples for some algo-

rithms are more dependent on sampling rates than for others. For in-

stance, given two algorithms, one might offer a considerably better CR

at one sampling rate, while at a different rate, the situation might be

completely reversed. In general, zero-order algorithms are more sensi-

tive to sampling rates than first order algorithms. [9]

In addition to those just mentioned, there are other characteristics

of compression algorithms which might be considered in order to have a
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clearer understanding of the advantages and disadvantages of various

methods. These characteristics are listed below. [9]

(1) An interpolation algorithm typically gives better results than

a corresponding prediction algorithm of the same order.

(2) First and higher-order algorithms often exhibit oscillatory

tendencies which detract seriously from compression efficiency.

(3) For most data signals, the first order predictor (FOP) and its

variations suffer most from oscillatory tendencies.

(4) Zero-order algorithms, because they suffer least from oscilla-

tory tendencies, quite often provide a compression ratio equal

to or greater than the first-order algorithms.

B. The Zero Order Interpolator

As previously mentioned the compression ratio realized by a particu-

lar algorithm may vary with the type of input data. Knowing the type of

input data, a designer could then implement the best algorithm for com-

pressing the data. Although present knowledge of the data characteristics

to be handled on board the space shuttle is quite limited, a study of

nearly 900 measurements from four flights of the Saturn vehicle determined

that the zero-order interpolator (ZOI) algorithm gives the best performance,

that is, the highest compression ratio and the lowest RMS error, of the

four algorithms mentioned at the beginning of this chapter. [1] Hence

it seems that the ZOI is the best initial choice for the space shuttle.
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The general procedure for the ZOI algorithm, sometimes referred to

in literature as the zero-order, variable corridor, artificial preceeding

sample retained (ZVA) algorithm, is outlined below. [2,10]

a) The occurrence of a non-redundant sample requires that a new

corridor be established. This is done by drawing lines of

zero slope through the end points of the tolerance range placed

about the non-redundant sample.

b) For a subsequent sample to be redundant, one end of the tolerance

range placed about the sample must fall within the corridor.

Each redundant sample modifies the corridor extended to the

next sample in the following manner. The new corridor consists

of that part of the previous corridor which is overlapped by

the tolerance range placed about the redundant sample.

c) If the tolerance range placed about the sample does not overlap

the corridor, the sample is non-redundant. However, it is not

retained. Instead, the midpoint of the corridor used to analyze

the sample in question, actually a predicted value, is retained

for the preceeding sample. Hence the retained sample is an

"artificial" or "adjusted" sample rather than a "real-data" sam-

ple.

Figure 2-1 illustrates how the ZOI might operate on various data in-

puts in accordance with the procedure just described. It might be noted
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while observing Figure 2-1 that although a sample might be redundant, it

need not lie within the corridor.

Although it has been determined that the ZOI seems to have the edge,

performance wise, over other algorithms, it will be shown in Chapter IV

that the ZOI suffers a disadvantage in terms of hardware implementation.

Although it will not be shown in Chapter V, the ZOI algorithm would, due

to increased complexity, require more software to implement the general-

purpose computer. These disadvantages, although worthy of consideration,

are, nonetheless, outweighed by the performance gains realized with the

ZOI.



III. System Description

Whether the machine chosen to implement the desired data com-

pression is a general purpose or a special purpose computer, there are

certain items which must be observed in order that the machine might meet

the basic requirements. These items are the subject of the following

discussion.

A. System Inputs [3]

The input data will be in the form of ten-bit data words which

may be received from one of sixty-four (64) data channels. For the

purpose of this report, these channels will be assumed to be simply

commutated. A "data ready" pulse will signal the machine that a new

data sample is ready for analysis. Since one of the main concerns in

this report is that of maximum word rates, the following definition

will be made.

Definition 3-1. The rate at which "data ready" pulses arrive at

the input will be denoted by the letter W. Hence W is the rate at

which the machine must be able to examine the input data words.

From the above definition it is quite easy to see that once the

data ready pulse is input to the computer, the corresponding ten-

bit data sample must be accepted within a period of 1/W.
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B. Time Divisions

In order to effectively snychronize the data for subsequent re-

construction, some type of time division must be employed. This will

allow insertion of a synchronization word periodically which, in turn,

will relate the data to a particular point in time. The following defi-

nitions should serve to clarify what is meant by time divisions.

Definition 3-2. Frame: a continuous (in time) block of input

data which contains 2048 ten-bit data words (starting point arbitrary).

Frame count will be recorded by an index called the main frame count

(MFC).

Definition 3-3. Subframe: a division of the frame which contains

64 ten-bit data words. Hence, there are 32 sub-frames per frame.

Sub-frame count will be recorded by an index called the subframe number

(SFN).

Definition 3-4. Subframe time slot (SFTS): a slot or position

within the subframe which is capable of storing one ten-bit data word.

Since there are 64 words per sub-frame, there are, therefore, 64 sub-

frame time slots per subframe.

One other item should be brought to light with regard to definition

3-4, and that is the fact that since there are 64 data input channels

and 64 SFTS's, each SFTS may also be thought of as a channel number or

address.
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C. Sampling Rates [3]

The maximum rate at which any one channel will be sampled will be

denoted by the symbol Rf. Hence if each channel is to be sampled at

a rate Rf, then

W = 64 Rf,

which simply states that the computer must handle input data words at

a rate 64 times that of the sample rate. In this report, 6 sampling

rates will be considered. These are Rf, Rf/2, Rf/4, Rf/8, Rf/16, and

Rf /32. It may also be desirable to vary the sampling rate between

channels, but it will be shown later in Chapter V that this can create

idle CPU time in the GP computer.

D. Data Output [ 3, 9]

By its very nature, a data compressor will accept input data which

is regularly spaced in time and output data whose time spacing is quite

random. This is undesirable since PCM telemetry systems require con-

stant output data rates. [1] An "uncontrolled output" data compression

system is shown in Figure 3-1.

COMPRESSED
INPUT DATA DATA N DATA
(CONSTANT RATE) COMPRESSOR (RANDOM RATE)

Figure 3-1 Block diagram of uncontrolled output data compressor

The problem of random output data rates may be overcome by the

addition of a buffer to the output of the data compressor. Unfortu-

nately, addition of the buffer introduces two major problems:
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1) During periods of high data activity the buffer will tend to

"overflow", resulting in indiscriminate loss of data. 2) During

periods of low data activity the buffer may become completely empty or

"underflow", once again resulting in a non-uniform output data rate.

Such a system is shown in figure 3-2.

INPUT DAACOMPRESSED OUTPUT
DATA DATA BUFFER DATA

(CONSTANT RATE) COMPRESSOR (RANDOM (CONSTANT
RATE) RATE)

Figure 3-2. Data compression system with uncontrolled buffer

A third, but somewhat less severe problem introduced by the buffer

is that of time delay. It is quite obvious that the time delay imposed

upon compressed data is proportional to buffer length. Thus the maxi-

mum allowable time delay establishes a top limit on buffer length (cost

and size may also be limiting factors). Furthermore, there will be

periods when the average output rate of the data compressor suddenly

becomes quite high (these are referred to as "active" periods during

which there is little redundancy in input data). The buffer should

therefore, be large enough so as not to easily overflow during these

surges of non-redundant data. It might be mentioned, in passing, that

any increase in buffer length also tends to ease the buffer queue control

problem which will be discussed in a subsequent section. So long as the

buffer size is not too large the time delay involved should have little

effect on the significance of compressable data. Non-compressable or
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critical data (e.g. data which might monitor some catostrophic failure)

is, of course, transmitted with no compression and no delay.

Given the system of Figure 3-2, it is reasonable to assume that if

information on buffer occupancy could be fed back to the data compressor,

the data compressor could, in turn, alter its average output rate so as

to prevent buffer overflow or underflow. A buffer controlled or "queue

length" data compressor system is shown in Figure 3-3.

INPUT DATA COMPRESSED OUTPUT
(CONSTANT DATA DATA BUFFER DATA

RATE) COMPRESSOR (RANDOM RATE) (CONSTAIT

A\ RATE)

BUFFER
OCCUPANCY
INFORMATION

Figure 3-3. A buffer controlled (queue length) data compression
system

It seems at present that a buffer length of about 1024 words

should keep any time delay error to a minimum while allowing sufficient

room for the onrush of data during active data periods.

E. Nominal Tolerance, Channel Priority,
and Buffer Queue [ 3]

In chapter II, the concept of data compression was introduced and

it was shown how a tolerance range is used, in conjunction with one or

more previous data points, to establish a reference corridor so that

the redundancy status of subsequent samples may be determined. The

initial tolerance is termed, nominal tolerance, denoted Tn, and it is
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desired that the nominal tolerance be easily programmable (i.e. ability

to read in values from paper tape, magnetic tape, keyboard, cards, etc.)

at the beginning of a given mission. Five values of Tn are to be con-

sidered. These are:

1) Tn = +1

2) Tn = +2

3) Tn = +4

4) Tn = +8

5) Tn = +16

Since it might be desirable to vary Tn between channels, a provision

must be made to store a value of Tn for each channel.

Among other items which should be easily programmable for a

given mission are the channel priority, P (a bi-valued variable), and

six buffer queue control points, ql, q2, ... , q6. A channel may have

either high or low priority, depending upon the importance of the data

handled by that channel. The buffer queue control points should be

selected so as to best prevent the occurrence of buffer overflow or

underflow. Throughout the remainder of this report, the following

items should be remembered about the buffer queue control points:

1) ql > 0

2) q6 < 1024

3) ql < q2 <... < q6.

Items 1) and 2) are quite obvious, since they deal with the minimum

and maximum possible levels of buffer occupancy, respectively.
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Although item 3) is merely a convention which states that the value

of the control points increases with increasing subscript, it might

serve to eliminate any confusion in later discussion.

In section D of this chapter, it was suggested that it might be

possible to use feedback information concerning buffer occupancy status

to cause the data compressor to alter its average output rate, thereby

preventing buffer overflow or underflow. One method used to alter the

average output rate of the data compressor is to alter the tolerance

used in redundancy analysis. For instance, if the tolerance is in-

creased, the average output of the compressor will decrease. Similarly,

a decrease in tolerance will result in an increase in the average compres-

sor output rate. After studying Chapter II, this should be quite

intuitive, since an increase in tolerance will increase redundancy

(decrease the number of retained or non-redundant samples), while the

reverse is true for a decrease in tolerance.

It is convenient at this point to introduce another variable called

the altered or modified tolerance, Tm . As will become quite obvious

later, it is the modified tolerance that is used in redundancy analysis,

however, it should be remembered that under some conditions Tm and Tn

are equal. In a subsequent section it will be shown that the exact

value which Tm assumes depends upon several factors, among which is Tn.

In the light of the previous discussion it is quite easy to see

how buffer occupancy may be controlled. For example, if the buffer

becomes loaded such that the occupancy level exceeds some buffer queue

point, the modified tolerance will be increased, which in turn lowers
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the average compressor output rate, allowing buffer occupancy to decrease.

On the other hand, if buffer occupancy becomes dangerously low, the modi-

fied tolerance will be decreased, which will result in a tendency to in-

crease buffer occupancy.

F. Confidence Sampling

During periods of low data activity (i.e. periods in which samples

vary only a very slight amount), a decrease in the modified tolerance

may not always insure that buffer underflow will not occur. When this

uncertainty exists, it becomes necessary to retain redundant data samples

in order to raise the buffer occupancy level. There are procedures for

selecting redundant data points during these periods of low data activity,

all of which are called confidence sampling.

One method of confidence sampling calls for the retention of a

sample periodically from each channel. This is accomplished by

counting the number of rejected or redundant samples succeeding the

last retained sample. If this count reaches some predetermined level

before another non-redundant sample is encountered, then the sample being

tested, when the count reaches this particular level, is retained.

There is another method of confidence sampling which is, in part,

controlled by the buffer status. To illustrate, suppose that it is

necessary to monitor the data on a particular channel during periods of

low activity and further, that the number of data points retained by the

periodic method is insufficient for accurate reconstruction. The chan-

nel in question could be "tagged" with a confidence sampling bit, and

during periods when the buffer occupancy is below a specified level,
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every sample from this channel (governed only by the sampling rate)

would be retained.

It might be noted that confidence sampling not only helps reduce

the buffer underflow problem, but also helps reduce reconstruction

problems by eliminating what is called transmission "dropout". Dropout

is simply an interruption that occurs between sampling runs or when a

channel temporarily becomes completely inactive. The machine which

reconstructs the data is unable to determine whether an inactive data

period occured during a run or a run was terminated and a new run was

initiated, until new data is received. If this uncertainty exists for

more than a very brief period of time, interpretation of the data may

become quite difficult.

G. Determination of Tm [3]

The information used in determining the value of Tm includes

buffer occupancy status, Tn, and channel priority. Table 3-1 shows

how the value of Tm will be determined based upon these factors, and

it also shows when confidence sampling will be used. The present buf-

fer status will be denoted by the letter j.
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Buffer Status Procedure

q < ql Retain all samples

ql < q < q2 Tm = Tn and confidence sampling

q2 < q < q3 Tm = Tn on all channels

q3 < q < ql Tm = 2Tn on all channels

q4 < q < q5 Tm = 2Tn on high priority channels
and Tm = 4Tn on low priority channels

q5 < q < q6 Tm = 4Tn on high priority channels
and delete low priority channels

q > q6  Delete all channels

Table 3-1. Values of Tm for all possible values of buffer
occupancy status (q).

H. Miscellaneous Preprogramed Items [3]

In addition to those previously discussed, there are three other

items which must be preprogramed before a mission. These items are:

1) A sixteen-bit synchronization word.

2) The buffer occupancy information control word (BOIC) which

is an eleven bit word. The five most significant bits of this

word indicate the SFN during which the buffer occupancy informa-

tions will be transmitted, while the six least significant bits

indicate the SFTS or channel over which this information will

be transmitted.

3) The compressed data output rate, R, which specifies, in terms

of "data-ready" pulses, the rate at which words are output

from the buffer. An index called the output synchronization
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count (OSC) will count the data ready pulses. When the OSC

becomes equal to R, a word is output from the buffer and the

OSC is reset.

I. Operating Procedure [ 3]

Having laid the groundwork in the previous sections, the general

operating procedure, by which the system must abide, may be introduced.

1) The arrival of a data-ready pulse signals that a new sample is

ready for examination. This sample must be accepted within

a period of 1/W.

2) Increment the SFTS index. If the SFTS index becomes greater

than 63, reset it and increment the SFN. The SFN resets when

it tries to exceed 31.

3) Using the SFTS index, access the memory location which contains

the sampling rate for this SFTS (channel).

4) If the rejected data count (RDC) for this channel is equal to

31, reset the RDC and force acceptance of this sample; prodeed

to step 8.

5) Obtain the existing reference corridor for this channel.

6) Determine value of Tm, based on buffer occupancy status,

priority, confidence sampling tag, and Tn (see Table 3-1).

7) Make a decision to retain or discard the sample. Determine

the new reference corridor values and return them to memory.

8) If the sample is retained combine with the SFTS index (to

form a sixteen-bit word) and put the combined information
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into the buffer.

9) After each 64 retained samples, insert the 16-bit synchroni-

zation identification word or its complement (the synch word is

alternated with its complement).

10) When the MFC resets (it is incremented each time the SFN is

reset, and is reset when it tries to exceed 16),.insert into

the buffer, at a time dictated by the buffer occupancy informa-

tion control word (BOIC), a ten-bit reading of buffer occupancy.

This reading will be combined with the channel address over

which the information is carried (also dictated by the BOIC

word).

11) Once each R data ready pulses, output a 16 bit word from the

buffer.

Of course, hardware or software implementation of this procedure

would be a bit more complicated than the procedure actually appears to

be. This presentation is merely to show the type of general procedure

that the data compression system, whether implemented by a general

purpose or a special purpose computer, must observe.
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IV. Data Compression Implementation: The Special-purpose Computer

A. General Information

In Chapter III, the desired functions of the data compression

system were introduced. Discussion in this chapter will, therefore,

turn toward data compression by a particular class of machine, namely,

the special purpose (SP) computer.

The special-purpose computer, as the name might imply, possesses

rather limited capabilities in terms of versatility of application.

For example, a special-purpose computer may be able to perform any one

of several data compression algorithms, however, its ultimate goal is

data compression and data compression alone. The machine may not easily

be modified (in fact, it would be easier to build another machine) or

"reprogrammed" to perform, say, guidance functions. It is interesting

to note at this point that there is yet some confusion over the exact

use of the terms "special-purpose" and "general purpose". Consider,

for example, the special-purpose computer which is capable of executing

one of several data compression algorithms, depending on the position

of one or more control panel switches. This machine is very often re-

ferred to as a "general-purpose data compression computer", while a

single-algorithm machine is termed a "special-purpose data compression

computer". Although the multi-algorithm machine indeed possesses more

computational versatility than the single-algorithm machine, it nonethe-

less has only one ultimate function---data compression. In order to
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avoid any further confusion on this matter, the following definition will

be made.

Definition 4-1 A special purpose (SP) computer is a machine which

possesses a single ultimate function and, depending on design, may

realize this function by one or more computational procedures.

From defintion 4-1, it is quite easy to see that both the single-

algorithm and multi-algorithm data compression computers fall under the

classification of special-purpose computers.

B. Speed

Even though the versatility of SP computers is quite limited, the

factors which act to limit versatility greatly enhance speed capabilities.

One of the main factors involved in the increase in speed is the reduc-

tion of instruction acquisition time, or the time required for the

machine to obtain instructions from memory. In a special-purpose machine,

instructions are usually permanently stored by a method called "hard

wiring", i.e. using combinational logic circuits to decode some easily

obtainable parameter such as a clock pulse count (actually, as it will be

shown later, a counter is sometimes used which counts every Kth clock

pulse). The counter or register in which this count is recorded is often

termed the program counter, while the count itself is usually called the

instruction address. Thus the only time delay involved is the propaga-

tion delay between the time that the instruction address is available at

the input of the logic circuitry and the time that the decoded information,
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or instruction is available at the output. Depending on the type of logic

circuitry employed and other design factors, this propagation delay may

range anywhere from about 50 nsec to about 400 nsec. In designing the

decoding logic, or address decoder, one must also take into consideration

the fact that conditional transfers or jumps may be required during

instruction execution and, therefore, provisions should be made so that

the processor might be able to alter the instruction address. In this

manner, the proper instruction sequence will be maintained. A block

diagram of such a system is shown in Figure 4-1. The typical operation

of this type system is the subject of the following discussion.

Initial assumptions: 1) The clock is some type of "free running"

timing device such as.an astable multivibrator, a crystal controlled

oscillator, etc.

2) The divide by K logic is positive edge-triggered and provides

an output pulse every K clock pulses.

3) The system is ready to begin analysis of the next data sample

(the program counter is set at the address of the last instruc-

tion executed and the divide by K circuit is reset and inhibited).

Typical operation: 1) Upon receiving a data ready pulse, the processor

first sets the program counter to the location of the first instruc-

tion in the sequence. After a time just slightly longer (by a few

nanoseconds) than the propagation delay time of the address decoder,

an "instruction ready" pulse will signal the processor that the

delay time has expired. At this time the processor sets the divide
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reset/inhibit line to zero and begins to execute the first instruc-

tion.

2) On the Kt h clock pulse the divide by K circuit provides a pulse

which increments the program counter (as will be discussed

shortly, the processor has now had sufficient time to complete

execution of the first instruction and is now in a "wait" mode).

When the "instruction ready" pulse arrives, the processor will

begin to execute the next instruction.

3) When a transfer or jump is required, the processor sets the

divide reset/inhibit line to one, which resets and halts the

divider. Next, the processor sets the program counter to the

proper count or address to obtain the next instruction. When

the "instruction ready" pulse arrives the processor sets the

divide reset/inhibit line to zero (allowing the divide by K

circuit to resume operation) and begins to execute the next

instruction.

4) At the end of the instruction sequence, the processor sets the

divide reset/inhibit line to one and enters a "wait" mode until

a new data sample becomes available. Upon the arrival of a new

data sample, steps 1) through 4) are repeated.

The instruction acquisition time for a system such as the one of

Figure 4-1 can be quite small. For instance, the delay between the time

an instruction is completed and the time the next instruction may begin

execution might range, depending on the design and hardware used, from
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about 75 nsec to about 425 nsec. Considering the present state of inte-

grated circuit technology, it would be reasonable to assume that an

instruction acquisition time of about 200 nsec could be realized with no

great amount of trouble or expense. However, there exists potential for

even greater speed, which may be realized with only slight modifications

to the system of Figure 4-1.

Consider once again the system just discussed. In selecting the

minimum allowable value for K, one must decide how many clock pulses are

required for the processor to execute the longest (that is the most time

consuming) instruction in the data compression algorithm. This number

of clock pulses is the minimum value which may be assigned to K and

still maintain proper system operation. It is immediately obvious, how-

ever, that this arrangement will almost surely consume more time than is

actually needed. To illustrate, consider an algorithm composed of a set

of instructions which may be broadly classified into three categories---

long, medium, and short. Further, suppose that the medium instruction

requires half as long to execute as the long instruction and that the

execution time of the short instruction is one fourth that of the long

instruction. The execution times for the long, medium, and short in-

structions will be denoted tk, tm, and ts respectively. If the algorithm

contains N long instructions, Nm medium instructions and N short instruc-m s

tions, then the total time required (T) for the system in Figure 4-1 to

process all the instructions is given by the equation

T = t (N + N + N ).

4 m -6

4-6



On the other hand, if a system used only the amount of time required by

a given instruction, the total time required (T) would be given by the

equation

T = Nztz + Nt + Nt .
m m ss

Thus, a system of this type uses an amount of time,

AT = Nm(ty-tm) + Ns (t£-ts), less than the system of Figure 4-1.

As a numerical example, consider the following parameters:

N = 25, N = 55, N = 20, and t = 4psec.m s

For the system of Figure 4-1,

T = 4(25 + 55 + 20)psec = 400psec, whereas a system using only

the time required for each instruction would use an amount,

T = 4(25)psec + 55(2)psec + 20(1)psec, or T = 230 psec, and

AT = 170 Psec, which represents a 42.5% reduction in execution time with

the values given.

Systems which use only the amount of time required for an instruc-

tion to execute are sometimes called "completion countdown" systems, and

a provision is usually made so that the processor will signal upon com-

pleting execution of each instruction. The term "completion countdown"

comes from the fact that in some processors the address decoder not only

provides the instruction, but also provides the processor with the time

requirement (i.e. the number of clock pulses required) for that instruc-
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tion. This time requirement is entered into a counter which decrements

each time a clock pulse is received. When the counter (sometimes called

the "completion counter") reaches zero, the processor has had sufficient

time to complete execution and will provide an "execution complete"

pulse. A block diagram of a completion count-down system is shown in

figure 4-2. This system operates in a manner described as follows.

Initial assumptions: 1) The clock is a free running timing device such

as an astable multivibrator, a crystal controlled oscillator, etc.

2) The system is ready to begin analysis of the next data sample

(the program counter is set at the location of the last instruction

executed).

Typical operation: 1) When a "data ready" pulse is received, the pro-

cessor sets the program counter to the location of the first instruc-

tion in the data compression sequence.

2) Upon arrival of the "instruction ready" pulse the processor

begins executing the instruction.

3) Almost immediately upon completion of the instruction (within

1 nsec or so), the processor increments the program counter and

awaits the next "instruction ready" pulse.

4) When a transfer or jump is required the processor sets the

program counter to the proper location to obtain the next instruction,

and awaits the corresponding "instruction ready" pulse.

5) Following the completion of the instruction set, the processor

enters a "wait" mode until the next "data ready" pulse is received.
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Steps 1) through 5) are then repeated.

Since the system of Figure 4-2 makes quite efficient use of its time,

its speed at this point is dominated by such factors as processor speed,

the data compression algorithm employed, and the cycle time of the core

memory. The core memory, of course, is necessary since it provides

storage for pre-flight programming as well as providing the buffer

storage for the retained data samples.

C. Hardware Requirements

The hardware required to implement data compression will, of course,

vary with several factors. One of the main influencing factors is the

data compression algorithm which is to be realized. Naturally, the more

complicated the algorithm, the more the hardware that will be required

for implementation.

In Chapter II, there were four data compression algorithms mentioned

as possible candidates for the system to be realized. Table 4-1 shows

a tabulation of hardware requirements and typical execution or cycle

times for the algorithms of interest [6].

Algorithm TTL IC Package Cycle Number of 8-bit
Count Time Reference Words per

Channel

ZOP 50 5isec 2
ZOI 87 6.5psec 3
FOP 62 6.0psec 3
FOI 202 20.Opsec 8

Table 4-1. Typical hardware requirements and cycle times for
different algorithms.
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The values in Table 4-1 were calculated on the basis of the fol-

lowing assumptions [6].

1) The data word entering the compressor is eight bits long.

2) The core memory has a cycle time of no more than 2 Usec.

3) For an eight-bit word an ADD time of 250 nsec (with present

technology, this estimate is quite conservative).

4) The system clock operates at 2 NHz.

5) DIVIDE operations are assumed to require N clock pulses,

where N is the maximum number of bits in the word.

6) In most cases, where numbers are to be divided or multiplied

by an integral power of 2, it is done on a wired basis in

such a way that no extra clock pulses are required.

7) Reference values needed by an algorithm on a per channel

basis are assumed to be eight bits long and are stored in

thirty-two bit blocks.

8) Apertures (corridor values) are stored rather than wired,

so that adaptive aperture (variable corridor) techniques

may be applied.

It is quite obvious from the table that the ZOI or ZVA

algorithm suffers a disadvantage in both cycle time and the number

of IC packages required for implementation. As mentioned in Chapter II,

however, these disadvantages are thought to be outweighed by the gains

in performance realized by the ZOI algorithm. There are two major

reasons for this line of thought. First, the additional circuitry

required to implement the ZOI algorithm should not add appreciably to
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the size of the system. Furthermore, the use of LSI circuitry could

drastically reduce the amount of external wiring as well as the num-

ber of IC packages required, further reducing the overall size of

the system. Second, the maximum value of W (see definition 3-1 in

Chapter III) for the system is the inverse of the cycle time, or, in

the case of the ZOI algorithm,

W = 1 153 K samples/sec.
6.5psec/sample

However, it has been determined that the maximum required sampling

rate for any one channel should be 120 samples/sec 13]. Assuming ,

for the purposes of a worst-case analysis, that all sixty-four

channels must be operated at the maximum sampling rate, the minimum

allowable value for W is given by

W = (sample rate) x (number of channels),

or W = (120 samples/sec-channel)(64 channels),

which simply means that W = 7680 samples/sec. By no means will the

rate put a strain on a system capable of operating at 153 K samples/sec.

D. Cost

It would certainly be logical to assume that as the complexity of a

special-purpose machine (or any machine for that matter) increased, so

would the cost. This being the case, one must consider the design re-

quirements very carefully before choosing any of the current special pur-

pose data compressors. Furthermore, it must be decided as to whether or
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not it would be beneficial to design a new machine (the cost of design

is also a direct expense) if it has been determined that significant

production and weight costs may be saved over existing machines. Suppose,

for example, that there are several multi-algorithm machines available,

but only a single algorithm machine is required. If the least expensive

machine available cost $60,000, and it would cost $60,000 to design, debug,

and produce a single algorithm machine, then it might be wise to switch to

the new design. There are three main reasons behind this choice. First,

being much simpler, the machine would weigh less and require a smaller

amount of space. Second, also due to simplicity, power requirements

would probably decrease and reliability would likely increase. Third,

the design costs tend to make the purchase cost of the first few pro-

duction machines quite high. As more machines are produced, however,

the cost per machine begins to decrease quite sharply and it will

eventually level off at the then current per machine production cost

(i.e. all cost incurred, at this time, is production cost). To be sure,

there will be little decrease in cost per unit if the production is

limited to a very few (four or five) units. However a new design may

be desirable simply from the standpoints of weight, size, power con-

sumption, and reliability, if costs are comparable. Figure 4-3 shows

an approximate cost spread for special-purpose data compression machinery.

[5]. This curve is based on machines which may possess multi-algorithm

or single algorithm capabilities, but only simple (ZOP, ZOI, FOP, FOI)

algorithms are considered. Naturally, there would be an increase across

the board for the more complex algorithms.

4-13



C 0.1
0
S
T

0.05

N

M

I

L
L
I

0oN 0 .0 1 I l l I I I I I I I I I I I I I I I l I I I

S 0 40 80 120 160 200 240 260

MAXIMUM DATA RATE (K SAMPLES/SEC)

Figure 4-3. Approximate cost spread vs. sample rate for special-
purpose hardware.

4-14



E. The TDC-1 Special-Purpose Data Compression Computer [10]

Since the increase of interest in data compression which came

about in the mid-sixties, there have been a number of experimental and

operational data compressors designed and built. One in particular

quite closely approximates the specifications given in Chapter III and

it will, therefore, serve as an example of the type of special purpose

data compression computers which are currently available. This machine

is the Lockheed TDC-1 data compressor. It might be mentioned, before

beginning the discussion, that some of the terminology found in the

Lockheed operations manual has been altered slightly so as to fit the

definitions introduced in section B of Chapter III. For example, the

term "master frame" is used in the manual, but it corresponds to the

term "main frame" introduced in Chapter III. Hence, "main frame" will

be used throughout the discussion.

Input data - The TDC-1 processes input data having rates and format as

described below.

1) The commutation rate is 7200 or 14,400 samples per second,

corresponding to a system clock rate of 144 KHz or 288 KHz,

respectively.

2) Channel sampling rates are pre-programmable at 4, 12, 40, and

120 samples per second.

3) Main frame - A main frame consists of 30 sub-frames.

4) Sub-frames - A subframe consists of either 60 or 120 consecutive

subframe time slots, corresponding to system clock rates of 144
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KHz and 288 KHz, respectively.

5) Sub-frame time slots - Input data will be available for

examination by the data compressor at prescribed time slots

relative to the leading edge of the main frame sync pulse.

Each time slot has a duration of about 20 system clock pulses.

6) Sub-frame time slot groups- The time slots within a sub-frame

may be considered to be grouped into time slot groups in a

manner such that the sampling rate may vary from channel to chan-

nel. This is accomplished by the following time slot grouping.

Group Time slot position

I 2N+ 1

II 2N + 2

III 4N + 1

IV 4N + 2

V 4N+ 3

VI 4N+ 4

VII Last three time slots of sub-frame

Here, N is an integer and ranges upward from zero to the number

which corresponds to the maximum allowable number of time slots,

within a subframe, which may contain active data samples. The

term "time slot position" simply refers to the position of the

time slot with respect to the beginning of the sub-frame. Time

slot groups I, II, and VII are used when the system clock runs

at 144 KHz, while time slot groups III, IV, V, VI, and VII are
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in force when a system clock rate of 288 KHz is used. It

should be noted, however, that group VII does not contain any

information to be processed.

5) Combinations of channel sampling rates - The data within each

time slot may be obtained with any one of four sampling rates.

However, data associated with the same time slot group must

all be sampled at 12 and/or 120 SPS, or all be sampled at 4

and/or 40 SPS.

Output data - The TDC-1 data compressor provides outputs described as

follows.

1) A compressed PCM signal is provided, and is in NRZ-Space format.

2) The PCM data word contains 10 magnitude bits, plus a time slot

identification of 6 or 7 bits, as required.

3) The PCM synchronization word is either 32 bits long (system

clock frequency of 144 KHz), or 34 bits (system clock frequency

of 288 KHz), and is output once every 66 output word times.

4) The frame sync word is output every multiplexer sub-frame.

This word serves to identify the specific multiplexer sub-

frame within a main frame sequence, and to identify the main

frame within a sequence of 16 main frames.

5) A buffer status word is output every 16 multiplexer main frames.

This word indicates the level of buffer occupancy at the time

it is entered into the buffer.

6) The PCM output bit rate is preflight programmable, and is

defined by the following equation

4-17



B Fc- , where
2n

B is the bit rate, Fc is the system clock frequency, and n is

the programmable integer parameter which may range from 3 to 16.

Data compression algorithm - The zero-order, variable corridor prediction

algorithm is used to determine redundancy of data samples, with

the prediction tolerance limits being assigned, through the command

input, independently for each channel. There are six possible tole-

rances which might be chosen. These tolerances, in terms of per-

cent of the 10 bit data word are shown in Table 4-2, together with

the significant bits for each tolerance.

Programmable control logic - Programmable control logic is provided so

that data acceptance may be controlled by a set of input logic

signals.

1) Control logic inputs - The following control signals are pro-

Tolerance Significant bits

+0.1% 1 - 10

+0.78% 4 - 10

+1.56% 5 - 10

+3.13% 6 - 10

+6.25% 7 - 10

+12.5% 8 - 10

Bit 1 = LSB , Bit 10 = MSB

Table 4-2. Available tolerance ranges and correspond significant

data bits for TDC-1 data compressor.

vided, within the TDC-1, as inputs to the control logic.
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a) Command (from vehicle command system) to force

acceptance.

b) Two signals which indicate two specific combinations

of prediction tolerance limits (T0  T1 , 2 , and

T T * T).
0 1 2

c) A stored priority tag

d) A stored redundant sample tag

e) Inputs for the six ranges of buffer occupancy status.

f) Four inputs, each corresponding to a specific sampling

rate.

g) Four inputs, each corresponding to the time slot group

to which the data sample being examined belongs.

2) Control logic output functions - The application of the inputs

previously described allows the control logic to realize the

following functions.

a) Normal algorithm operation with nominal tolerance.

b) Normal algorithm operation with twice the nominal

tolerance.

c) Normal algorithm operation with four times the nominal

tolerance.

d) Force acceptance of sample.

e) Force rejection of sample.

3) Fixed control logic functions - The following conditions are

those which always produce a specific control logic output

function.
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a) When buffer occupancy reaches the minimum allowable

level, all data samples are accepted.

b) When buffer occupancy reaches the maximum allowable

level, all data samples will be discarded, except

for those samples processed concurrently with a

commanded "force accept" input.

c) One (1) data sample will be accepted from any channel

addressed with a "force accept" command.

Commanded functions - There are certain commands available which are

used to perform various functions of control. A command is executed

when its corresponding input code is received from the vehicle com-

mand system. Commands are available to perform the following func-

tions.

1) Change stored prediction tolerance values assigned to the

addressed channel.

2) Change stored priority tag assigned to the addressed channel.

3) Force acceptance of one data sample from the addressed channel.

Confidence sampling provisions - The TDC-1 provides for acceptance of

redundant data samples to prevent buffer underflow, as well as

providing confirming samples for semi-static channels.

Buffer memory - A buffer memory is provided of length 1024 words. Also

provided is a means to constantly monitor the level of buffer

occupancy which will detect 6 occupancy levels within the buffer.

The lowest level is set at 4 words, with the remaining five levels

being programmable in increments of 16 words or less.
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As can be observed from the foregoing discussion, the TDC-1, while

closely approximating the desired design features, still has some short-

comings. First, and probably foremost, is the fact that the TDC-1 uses

the ZOP algorithm, and it is difficult to say exactly how much trouble

would be involved in converting to the ZOI algorithm. Second, there is

a deficiency in the number of available sampling rates, since the TDC-1

has only four rates available. Once again, this could probably be altered

to meet the sampling rate requirements as specified in Chapter III, but

the lack of versatility makes alterations to the system operating procedure

quite difficult. If it is deemed that a special purpose machine be used,,

it may be easier and less expensive to seek a new design which exactly

matches the specifications.

The difficulty in reprogramming the special purpose computer logi-

cally leads to the question of whether or not a general purpose computer

might be better suited to this application. It is this question that is

the subject of the following chapter.
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V. Data Compression Implementation: The General-Purpose Computer

When the concept of data compression was first introduced with its

varied compression algorithms, the general-purpose computer, because of

its versatility and ease of programming, seemed to be a natural choice

for implementation of the idea. At this time, however, general-purpose

computers were either too expensive or too slow for most applications,

so special-purpose data compression computers were employed. Subse-

quently, general-purpose computer technology began taking great strides

forward and, as a result, the general-purpose computer became faster and

less expensive, hence becoming practical for data compression imple-

mentation. Recently, however, the quantity of data to be handled has

increased by such a great amount that the price of general-purpose

computers with sufficient capacity has once again become prohibitive.

This has resulted in the present trend back toward the use of special-

purpose computers for data compression implementation.

Since there are several factors which must be considered, such as

speed, cost, versatility, reliability, etc., a fairly accurate analysis

of the capabilities of available systems must be made before a decision

to use either a general-purpose computer or a special-purpose computer

is reached. In Chapter IV special-purpose computers were discussed,

with emphasis on a particular machine. Similarly, this chapter is

devoted to the discussion of the features of general-purpose computers,

with a section allocated to a specific machine.
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As previously mentioned, the general-purpose computer is quite

versatile, having the ability to be programmed for almost any contingency

from simple accounting problems to the most complex mathematical

calculations. This versatility stems from the fact that the instruction

sequence or "program" used by the computer is stored in a medium which

allows the programmer to easily add instructions, remove instructions,

or otherwise edit the program. Before proceeding, and in order to

better understand the limitations of general-purpose computers, a brief

discussion of main memory systems is in order.

B. Main Memory Media

In any literature concerning main memory systems, certain terms are

frequently encountered in the memory system specifications. To aid in

comprehending these terms, the following definitions are made.

Definition 5-1. Memory Cycle - all operations which are required within

the memory unit when a "read" command or a "write" command is received.

Definition 5-2. Cycle Time - the time required to complete one memory

cycle.

Definition 5-3. Read Phase - the phase of the memory cycle during which

information is read from a specified memory location.

Definition 5-4. Write Phase - the phase of the memory cycle during which

information is written into a specified memory location.

Definition 5-5. Memory Address Buffer - a register which contains the

address of the location in the memory where the read or write phase

takes place.
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Definition 5-6. Memory Data Buffer - a register which contains the

information or data which has been read from or written into a

specified memory location.

Definition 5-7. Destructive Readout - a read process which destroys or

erases the data contained in a specified memory location as the

data is read into the memory data buffer.

Definition 5-8. Non-destructive Readout - a read process which does not

alter the data contained in a specified memory location as the data

is read into the memory data buffer.

Definition 5-9. Access Time - the time which elapses between the time

a "read" command is received and the time the data is available in the

memory buffer, or the time which elapses between the time a

"write" command is received and the time the data in the memory

data buffer has been written into memory (in most literature there

is no distinguishment between "read access time" and "write access

time"; the term "access time" is used for both).

There are several types of memory media available, with varying costs,

access times, and cycle times. Although the purpose of this paper is

not to analyze the performance of various memory systems available, a

few descriptive remarks may aid in a better understanding of subsequent

topics.

Almost all of the memory systems available today may be grouped into

three broad categories based on the media employed. These categories

are, 1) dynamic magnetic systems (magnetic tape, discs, drums), 2) static
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magnetic systems (core), and 3), electronic systems (systems using bipolar

or MOS devices). Dynamic magnetic systems are characterized by non-

destructive readout, high storage capacity, and rather slow access times

(on the order of milliseconds). These systems are usually restricted in

use to backup memory systems due to lack of speed. Static magnetic

systems are characterized by destructive readout, relatively limited

storage density, and fairly fast cycle times (0.8 Usec - 3 psec typ.).

The magnetic core is the best example of this technology, having proven

its ruggedness and reliability over the past decade. Mass production

techniques have, over the years, lowered the cost of core memories, hence

economy is an additional dividend. Electronic systems are characterized

by non-destructive readout (in general), fairly high storage densities,

and fairly fast (MOS devices) to extremely fast (bipolar devices) access

times (50 nsec - 2 psec typ). With the present state of the art,

electronic memories are still, bit for bit, a good deal more expensive

than core memories. An additional disadvantage of electronic systems is

the fact that power must be maintained in order to assure the integrity

of the data contained in the memory. Any momentary power failure usually

results in complete loss of data in electronic memory systems. Both core

memory systems and electronic memory systems are quite suitable as main

frame memories in general-purpose computers, but core memories.are, by

far and away, the most popular of the two.

It might be mentioned, in passing, that there are two more types of

static magnetic memory systems which promise increased speed and/or
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increased storage density. These are 1) magnetic bubble, and 2) magnetic

domain tip. Both of these concepts are still experimental and it is

likely to be several years before they will be proven reliable or will

bear a reasonable price tag. The same facts are true of the present

experimental holographic memory systems.

Since this chapter will have a section devoted to a particular

general-purpose computer, it would be reasonable to restrict the

remaining discussion in this section to the type of main memory system

employed by this computer, namely core memory.

The biggest disadvantage of core memory is the characteristic of

destructive readout. In order to guard against loss of data, most core

memory systems are set up, using some sort of micro-programming technique,

so that both the "read" command and the "write" command will cause the

system to complete one full memory cycle. To illustrate, consider the

following steps which are required to perform a read function in a

core memory system without loss of data.

1) Place address of location to be read from in memory address

buffer.

2) Apply a pulse to the "read" command input.

* 3) Perform read phase, placing information into memory data buffer

(when this phase is completed, the data in the specified

location has been erased or destroyed.)

* 4) Perform write phase, storing the data contained in the memory

data buffer back into the specified memory location (this phase
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effectively "restores" the data which was originally stored

in the specified location.)

* 5) Send "cycle complete" pulse to central processing unit.

Those steps marked by an asterisk (*) are steps performed within

the memory system and are usually under micro-program control. For most

core memory systems, the address must be present in the memory address

buffer before the read or write command is received by the system, and

must remain unaltered until a "cycle complete" pulse is output by the

memory system.

A write function is performed in much the same manner, except that

during the read phase, the information contained in the specified

location is not gated into the memory data buffer. Rather, it is

discarded, which renders the read phase as nothing more than a "clear"

operation. In some core memory systems the information to be written

into memory must be present in the memory data buffer before the write

command is received by the memory system, while in others, the information

may be placed in the memory data buffer any time before the write phase

begins.

From the discussion in this section, two very important facts,

regarding core memory systems, may be extracted. First, both the "read"

and "write" commands cause the core memory system to complete one full

memory cycle. Second, once a "read" or "write" command pulse is

received by the system, it must complete one memory cycle before it can

process another command. To be sure, when a read command is executed,
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the data is available in the memory data buffer after the access time has

elapsed, but the data in the buffer may not be altered because it has not

been restored by the write phase of the memory cycle. These facts should

be kept in mind while reading the next section, which deals with the

speed of general purpose computers.

C. Speed

Although the various main memory systems previously discussed lend

extreme versatility to the general-purpose computer, they do,in general,

cause a severe decrease in the speed with which the computer operates.

The main reason for this is the fact that the computer must "read" or

"fetch" each instruction from memory, one by one, as the program is

executed. Simply stated, this means that for each instruction to be

executed in the program, at least one memory cycle must be executed.

There is one class of instructions which require only one memory

cycle (that is to fetch the instruction itself). These are usually

called "generic" instructions and they describe an operation which is to

be performed in a register, say, such as complementing the register,

shifting right or left, etc. Other classes of instruction, such as

input-output instructions and memory reference instructions, in general,

require more than one memory cycle for execution.

In addition to the time required for the memory cycle, there is a

given amount of time required for the processor (arithmetic units, shift

registers, program counter registers, etc.) to perform the tasks which
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are required of them for each instruction to be executed. Since most

of these processor components are bipolar electronic devices or bipolar

integrated circuits, however, this processor cycle time is fairly small

when compared to the cycle time of even the fastest core memory (there

are certain instructions, nonetheless, which will cause the processor to

use an amount of time significantly greater than the memory cycle time,

such as multiply or divide instructions).

If a programmer was well familiar with the machine for which he

was writting a program, that is, if he knew the number of memory cycles

required for each of the various instructions, as well as the processor

cycle time for each instruction, then it would be a rather simple matter

to sum the times required for each instruction in the program to obtain

the time needed to make one iteration of the program. The number of

iterations per second, then, is the reciprocal of the time required for

one iteration. However, the process of familiarizing oneself with the

characteristics peculiar to a given machine can be quite bothersome and

time consuming, since processor cycle times may vary quite a bit from

instruction to instruction. Also, as previously mentioned, the number

of memory cycles may vary between instructions, but this variance is

not so great, generally ranging from 1 to 3 memory cycles per instruction.

In most cases, the programmer need not have to learn all these details

before being able to calculate the iteration time of program, because

most computer manufacturers supply, with their software documentation,

a table of execution times for each instruction in the set used by the
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particular machine to which the software applies. As will be discussed

in subsequent sections, determining the iteration time for a given

program may not be as simple as implied in this section, due to the

possibility of branches within a program, but a method will be shown as

to how to determine the safest minimum iteration time for a given program.

D. Programming Techniques

If three programmers were to each write a computer program so that

all three programs performed exactly the same function or functions, then

the odds are quite high that 1) no two of the programs would require the

same amount of storage and 2) no two of the programs would have the same

iteration time. What this means is that a programmer must decide whether

his program is to be designed to occupy the least amount of memory in the

computer or to require the least amount of iteration time or to be a

compromise between memory requirements and execution time. This dilemma

most often exists in programs where there exists, along with the instruction

set, a data set which is to be processed, in some way, by the instruction

set. It is this type of program which is the subject of the following

discussion.

Consider a program which consists of an instruction set plus 1) N

data entries which each require only one bit of storage, 2) K data entries

which each require seven bits of storage, and 3) M data entries which require

sixteen bits of storage each. Further suppose that the computer on which this

program is to be run is a sixteen-bit machine. The programmer has two
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basic options open to him at this point. He could allow each data entry

to occupy one word (16 bits) of memory, in which case the data storage

requirements would be

K + N + M words

Data stored in this manner is quite often referred to as unpacked data.

On the other hand, the programmer might elect to use packed data. For

example, if there are N one-bit data entries, then one word could

provide storage for sixteen of these data entries. Another method of

"packing" the data would be to let one word provide storage for two of

the seven-bit entries and two of the one bit entries. The object of

packed data is to make the most efficient use of the space where the

data is to be stored. It is quite obvious that where there is a large

number of data entries, each requiring fewer bits than the standard

word in the computer, significant reductions in storage requirements

may be realized by using packed data. Of course, as the number of bits

per data entry increases, the significance of the storage requirement

reduction, using packed data, decreases.

To further illustrate the advantage to using packed data, consider

again the previous example where N = 28, K = 28, and M = 5. If

unpacked data is used, then the data storage requirement is

28 + 28 + 5 or 61 words

It is quite apparent that no reduction can be realized where the sixteen-

bit data entries are concerned. However, it is noted that the total

number of bits required for the storage of the one-bit data entries is
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28 bits, while 7 x 28 or 196 bits are required for the seven-bit entries.

There are many ways in which the data might be packed, but only two will

be illustrated. The first way would be to place 14 one bitentries in

each of 2 words and then to place 2 seven bit entries into each of 14

words. In this way, the total data storage requirement is

2 + 14 + 5, or 21 words.

The second way would be to place 2 seven-bit data entries and 2 one-bit

data entries into each of 14 words. This would bring the total data

storage requirement to

14 + 5, or 19 words.

It is rather easy to see that either of the afore mentioned ways to pack

the data would cause a significant decrease in data storage requirements.

Using packed data does, nonetheless, introduce some problems, all

of which stem from the fact that the data stored in this form requires

a process by which the desired information is extracted from the packed

data word. This process is sometimes referred to as "unpacking" or

"decoding". As with any other process which a computer is required to

perform, an instruction set must be provided to perform this decoding

of the packed word. This instruction set is obviously going to require

storage, but more important, it is going to demand a certain amount of

execution time for each decoding operation required. Naturally, when the

data has been packed in some symmetrical manner so as to reduce the
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number of instructions required for decoding, the execution time for

each decoding operation will be reduced. However, when many decoding

operations are required, there will likely be a significant increase,

in the amount of time required to realize the same functions, over the

time needed when unpacked data is employed.

If memory space is a critical factor and there is a fairly large

amount of data requiring fewer bits than the standard word in the

particular computer, it would probably be best to use packed data, at

the expense of processing time. By contrast, if speed is the critical

factor and there is memory space available, then unpacked data should

be used. It may be decided that a compromise is necessary, but the

final decision would depend, of course, on the nature of the function

which the computer is to perform.

Many of the newer general-purpose computers provide additional

hardware features, such as overlapped core storage, instruction look-

ahead, parallel execution, and high-speed scratch-pad memories. Each

instruction is, in effect, fetched or read from memory whenever possible

during the execution of the previous instruction. In some cases,

multiple index registers and accumulators are available to allow parallel

execution whenever possible. All of these hardware features make the

programmer's task much easier as well as offering potentially great

computational power. However, it is next to impossible to realize this

potential, in most cases, due to the existance of branching instructions,

which render instruction look-ahead and parallel execution useless. This
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is because the previous instruction must be fully executed before it

is known where the next instruction to be executed is located 18].

Since most of the smaller flight computers do not possess such features,

however, there will be no more discussion on the subject, except to

mention that when considering a ground based data compression installation

or even a similar installation in an orbiting space station, these larger

general-purpose computers might be quite desirable due to increased

capacity.

E. The Critical Path

The concept of the critical path has been around for quite few years,

having found application in the planning of a wide range of projects

(construction projects, in particular) which demand certain resources,

such as time and money, which may, at one point or anotherbecome a

critical factor. The idea of the critical path may be stated as follows.

For any given process composed of multiple paths, each involving
a different set of steps for completion, there will exist at
least one path, which will require the greatest expenditure of
resources for completion.

Although it is possible for more than one critical path to exist,

this is very rarely the case. Also, there is no requirement as to

whether or not all paths must be completed each time the process is

completed, i.e., the process may be performed via one path under one

set of conditions, while under other circumstances a different path may

be taken. The critical resource is also a significant factor in

determinimg the critical path. For example a path which is critical by
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time may not be critical with respect to another resource, like equipment.

Since one of the main concerns in subsequent sections of this chapter

will be the speed with which a data compression program can be executed,

time will logically serve as the critical resource.

Because a flow chart might greatly aid in determining the critical

path of a process, the next section will deal with the flow chart of

the data compression procedure outlined in Section I of Chapter III.

F. System Operation Flow Chart

Before proceeding with a presentation of a typical system operation

flow chart, it would probably be helpful to briefly define the variable

names which are used therein. These definitions are presented below.

TEMP - a location in memory where the data sample in temporarily

stored during redundancy analysis.

OSC - the output synchronization count; this variable is incremented

each time a data ready pulse is received and causes a word to

be output from the buffer when it becomes equal to R, at

which time OSC is set to zero.

BFADl - the address in the buffer where non-redundant data samples

are stored.

BFAD2 - the address in the buffer from which data is extracted for

transmission.

R - the number of data ready pulses which must be received before

a word is output from the buffer.
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TSN - time slot number; indicates the time slot or channel address

which is currently being tested. 0 < TSN < 63.

SFN - sub-frame number; indicates subframe currently being processed.

0 < SFN < 31.

MFC - main frame count; increments each time the SFN is reset and

causes a reading of buffer occupancy to be placed into the

buffer (as specified by BOIC) when it reaches a value of 16,

at which time it is reset to 1.

BOS - buffer occupancy status; indicates the number of words in the

buffer which contain data for transmission, i.e., the level of

buffer occupancy. 0 < BOS < 1023.

BOIC - buffer occupancy information control; an eleven-bit word

which specifies the SFN and the TSN during which the reading

of buffer occupancy is to be placed into the buffer for

transmission.

SC - sample count; indicates the number of samples presented by a

particular channel and causes a sample from the channel to be

examined when it becomes equal to SRI.

SRI - sample rate index; determine the number of samples which a

channel must present before one is except for redundancy

analysis.

RDC - rejected data count; increments each time a data sample is

determined to be redundant and causes a sample to be retained,

regardless of redundancy, when it (RDC) reaches 31, at which

time it is reset to zero
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ADC - accepted data count; increments each time a sample is determined

to be non-redundant and causes the synchronization word (SW)

or its complement to be placed into the buffer when it (ADC)

becomes equal to 64, at which time it is reset to zero.

SW - synchronization word; this word, or its complement is placed

into the buffer after each 64 retained samples.

ql, q2, . . . , q6 - these are the buffer queue control points which

are used in determining TM for redundancy analysis.

TN - nominal tolerance; used in determining TM.

TM - modified tolerance; the tolerance which is actually used in

redundency analysis.

CB - confidence sampling bit; indicates whether or not a particular

channel uses confidence sampling.

PB - priority bit; indicates whether a particular channel is high

priority or low priority.

UCB - upper corridor boundry; indicates upper most corridor boundry

resulting from past redundancy analysis.

LCB - lower corridor boundry; indicates lower most corridor boundry

resulting from past redundancy analysis.

UTB - upper test boundry; the upper most boundry of the tolerance

range placed about the data sample during redundancy analysis.

LTB - lower test boundry; the lower most boundry of the tolerance

range placed about the data sample during redundancy analysis.
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As is quite obvious, some of the terms just discussed have appeared

in previous chapters. Those terms marked with an asterisk (*) denote

values which are only applicable to one channel, that is, a confidence

bit (CB) is stored for each channel, as is a priority bit (PB), a sample

count (SC), etc.

The system operation flowchart assumes 1) that unpacked data format

is used and 2) that the buffer storage begins at location 0 decimal

and ends at location 1023 decimal in the computer memory. With no further

delay, the system operation flowchart may now be presented, beginning

on the following page.
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The solid arrows on the flow chart indicate the critical path.

Examining the critical path, it is quite easy to see that there are

some 59 steps required to complete one iteration, if conditions are

such that the critical path is taken. Although an effort was made to

simplify the flow chart as much as possible, the fact is immediately

obvious that there are still quite a few steps which must be completed if

the system is to operate in a manner such as described in Chapter III.

In the next section, it will be illustrated how a procedure, whose

complexity approaches that of the one presented in the flow chart, will

severely limit the speed capabilities of a specific general-purpose

computer.

G. The IBM 4n Model CP General-
purpose Digital Computer.

The 47-CP computer is the intermediate range model of system 4n

flight computer family. Both data and instructions may be in halfword

(16-bit) format or fullword (32-bit) format. Actually, each word is

34 bits long, with the two extra bits being allocated to the functions

of parity error detection and storage protection. Since the main concern

in this section is the time which will be required to execute the

critical path of the data compression system operation as shown in the

flow chart, instruction execution times are vitally important. As

mentioned in a previous section, most computer manufacturers supply a

table of execution times for a given computer instruction set and IBM
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is no exception. Table 5-1 shows the table of average execution times

for each instruction (both full-word and half-word) in the set for the

4R-CP computer [11].

In order to obtain some idea of the speed capabilities of the 4n

CP computer, with respect to the desired system operation, the following

assumptions will be made.

1) The instruction set for the operating program is composed of

halfword instructions only. Of course, this would be very

difficult to do in practice, because halfword instructions do

not have the flexibility of fullword instructions. This

assumption, then, is a "best case" assumption, since halfword

instructions have the fastest execution time.

2) Each instruction will be assumed to require the same amount of

execution time as the unindexed halfword LOAD, ADD, and

SUBTRACT instructions (3.75 psec). Once again this is a "best

case" assumption, since these instructions are among those

requiring the least amount of execution time. In the actual

instruction set which would be dictated by the flow chart,

there would be many more instructions which would require more

than 3.75 psec than instructions which would require less than

3.75 psec.

3) Each step in the flow chart requires only one instruction execution

to complete. This, too, is a "best case" assumption, because

many of the steps in the flow chart would require several

instructions to complete.
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Halfword Fullword

F=0 F=-1, IA-0 F-1, IA-1

T =0.1 T=2,3 T=0.1 T'2,3 T 0. i T=2.3

LA 3.75 6.25 5.00 7.50 7.50 10.00
LAH 3.75 6.25 5.00 7.60 7.50 10.00

i LQ 3.75 6.25 5.00 7.50 7.50 10.00
SA 4.58 7.08 5.83 8.33 8.33 10.83

1 SAH 4.17 6.67 5.42 7.92 7.92 10.',2

SQ 4.58 7.08 5.83 8.33 8.33 10.83

A 3.75 6.25 5.00 7.50 7.50 10.00
AH 3.75 6.25 5.00 7.50 7.50 10.00

2 C 4.79 7.29 6.04 8.54 8.54 11.04
20 C11 3.796 6.46 5.21 7.71 7.71 10.21

AN 3.75 6.25 5.00 7.50 7.50 10.00
O R 3.75 6.25 5.00 7.50 7.50 10.00

XOR 3.75 6.25 5.00 7.50 7.50 10.00
O18.13 20.63 19.38 21.88 21.88 24.38

D 46.25 48.75 47.50 60.00 50.00 52.50
1 4.SH - - 5.83 8.33 8.33 10.83

MIH 11.46 13.96 12.71 15.21 .15.21 17.71
S 3.75 6.25 5.00 7.50 7.50 10.00
SH 3.75 6.25 5.00 7.50 7.50 10.00

1* SXR 4.17 6.67 5.42 7.02 7.92 10.42
LXR 2.08 4.17 3.33 5.63 5.21 7.92

2 MXIR I 2.08 4.58 3.33 6.05 5.21 8.33
ISPB - - 5.42 7.92 7.92 10.42

30 DIOC 4.17 - - - -

4* DIOC 2.50 4.38 3.75 5.63 5.63 8.13
5" I 5.42 7.92 7.71 10.21 . 10.21 12.71
6* BSI . - - 3.75 3.75 3.75 3.75

G' BC - - 3.75 3.75 3.75 3.75

50 BC - - 6.83 7.50 7.50 10.00

6* BOC - - 2.92 2.92 2.92 2.92

50 BOC - - 5.00 6.67 6.67 9.17

2* SC 2.71 - - - - -

SLF 1.88 + 1.25n 3.54 + 1.25n - - - -

SLD 1.88 +2.08n 3.54 +2.08n - - - -

SLC 1.88 1.25n 6.25 +1.25n - - - -
SLCD 1.88 + 2.08n 6.25 2.08n - -- - -

SRA 1.46 +0.83n 5.21 +0.83n - - - -

SRL 1.46 +0. 83n 5.21 *+ 0.83n - - - -
SRAD 3.55 + 1.67n 5.21 * 1.67n - - - -

7* SRRD 3.55 + 1.67n 5.21 + 1.67n - - - -

8 SRRD G.46 + 1.67m 8.13 + 1.67m - - - -

1' Add 2.5 microseconds if the content of the 5' Branch is ececuted (includes 1.25 micro-
next instruction location is altered and the seconds to read next instruction)
next instruction is located on an odd word 6* Branch is not executed
boundary 7* n <32

2' Add 1.25 microseconds it a skip Is ex- 8* When n32, let nm (n-32).
ecuted

3* F = 0, T  0; CW =,(EA)
4* CW = EA

Table 5-1. Average execution times for the instruction set of the IBM

41r-CP flight computer [11].
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Once the above assumptions are made, the calculation of iteration

time is quite a simple matter. Recalling that the critical path has

some 59 steps which must be performed, it is rather easy to see that

the critical path iteration period is

(59 steps) x (3.75 usec/step),

or

221.25 Psec.

Since this path must be fully executed before another data sample may

be accepted, the maximum data rate would be

1/221.25 sec/sample,

or

roughly 4.5 K samples/sec.

This rate, although obtained under "best case assumptions, is quite

unsuitable, because it has already been established that the data rate

per channel may reach 120 samples/sec. If there are 64 channels, then

the maximum overall data rate might reach 64 x 120 or 7680 samples/sec.

It is quite possible that the flow chart, and hence the program,

might be simplified, thus reducing the number of steps involved. However,

it must be stressed again that the figures just obtained were calculated

on the basis of "best case" assumptions, and since it was further
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established that most of these assumptions would be virtually impossible

to realize (with the flow chart presented), one would conclude that it

is quite unlikely that a single processor computer with the speed

capabilities of the 4-CP, would be able to meet the demands which

would be imposed.

Some literature, when discussing speed capabilities of general-

purpose, obtain an average iteration time based on the execution time

required for each path and the probability of execution of each path.

To be sure, this method usually produces data rates a good deal higher

than those obtained using the critical path method. However, in actual

practice, maximum data rate capability is determined by conditions

allowing for compression under any conceivable circumstance [8]. Hence,

the use of the critical path.

H. Multi-processor General-purpose Computers

Because it has been proposed that the space shuttle be equiped

with a parallel processor (3 CPU's), general-purpose computing system,

it might seem logical to let this system handle the data compression

duties. With the usual high capacity and high speed operation of a

multiprocessor system, this solution might, at first, seem quite

reasonable. There are, nonetheless, some demands imposed by the operating

procedure of the data compression system that might render coexistence

with other operating programs impossible.

To begin with, the data compression system function is one of

5-33



extremely high priority, i.e. when a data sample is presented to the

system, it must be accepted within a period of 1/W (see Chapter III)

or it will be lost for good. There are other functions, however, which

are of the utmost importance, such as guidance. The problem of contention

for processing time might best be illustrated by an example.

Consider a tri-processor system onto which various functions,

including guidance and data compression, have been programmed. Suppose

that for the sake of safety and accuracy, it has been deemed necessary

that the guidance program be executed in triple modular redundant (TMR)

mode. This being the case, none of the three CPU's may be used for

anything else as long as the guidance program is executing. Now suppose

that at some time after the guidance program has begun execution a data

sample is presented to the system. It is somewhat obvious that if the

guidance program does not complete execution within a period of l/W, then

the data sample will be lost.

By nature, when high priority programs become highly active, it

usually indicates that some significant changes are taking place. If

this is the case, then the quantity.of non-redundant data samples is

also going to increase, requiring increased activity on the part of the

data compression system. All of this is quite likely to result in a

serious contention for processing time and possible indiscriminate loss

of important data.

Returning once again to the system operation flow chart, it can be

seen that each time a data sample has been processed, the system enters
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a "wait" mode until a new data sample arrives. If a general-purpose

computer, having sufficient capacity and speed to meet the data

compression system requirements, was being used for data compression

purposes, then this "wait" time would constitute idle CPU time which

could be put to use on other programs. Thus employed, the computer

could process low priority programs until an interrupt signaled the

arrival of a data sample, at which time the computer would immediately

begin processing the data sample. In this manner the general-purpose

data compression computer could offer some boost in capacity to the

tri-processor computing system. In any case a processor must be

assigned to perform data compression as the primary function.

I. Cost

There is very little that can be said about the cost of general-

-urpose computers that is not already well known fact. Quite naturally,

the larger and faster machines are more expensive. Similarly, cost

increases in proportion to the amount of main storage that a computer

has. Figure 5-1 shows a typical cost spread, for general purpose

computer used as data compressors, as a function of maximum sampling

rate [5]. This set of curves is based on implementation of the simple

data compression algorithms (ZOP, ZOI, FOP, and FOI). One quite

astonishing fact that may be observed from Figure 5-1 is that multiple

general-purpose computers, that is, multi-processor systems, are less

expensive for data compression purposes than are single-processor systems
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having the same capacity. This is probably due to the fact that slower

and less expensive components can be used in the multi-processor systems,

while still maintaining the necessary computational capacity.

In summing up, it may be stated that although it is possible to

use general-purpose computers for data compression implementation, the

demands of the system discussed herein call for a machine with a bit

more speed than the 47-CP. If it is decided that a general-purpose

machine is to be used for data compression, one of the biggest problems

might be finding a flight computer with suitable capacity as well as

acceptable costs.
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VI. Conclusion

From discussion in previous chapters, it is obvious that both

special-purpose computers and general-purpose computers can be used

for data compression implementation. However, there is a considerable

difference in the cost per given performance between these two approaches.

Figure 6-1 is a composite of Figures 4-3 and 5-1 and makes a cost

comparison between special-purpose and general-purpose data compression

implementation somewhat easier [5]. The dotted line on the cost curve

shows the approximate minimum yearly lease costs for general-purpose

computers. For data input rates of 10K samples/sec. or less, the lower

priced general-purpose computers are quite competitive, price-wise,

with special-purpose computers. However the lower price range of

general-purpose computers would almost certainly not include any type

of tactical flight computer with the durability and reliability which

would be required by a space mission. Therefore, it must still be

concluded that the general-purpose computer will, for the purposes of

space borne data compression, be more expensive than its special purpose

counterpart.

The future must be considered, also. Suppose that at some time

forthcoming, the input data rate is expected to rise to about 40K

samples/sec. It would certainly be wise to choose a computer which

would be capable of handling this rate, even though the present demands
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might not be so strenuous. At 40 K samples/sec., the minimum cost of

a single processor, general-purpose computer is about five times the

maximum cost of a special-purpose computer with the same capacity. At

this input data rate, a multi-processor general-purpose computer might

seem like a reasonable alternative to the single processor general-

purpose computer, however, it must be remembered that in the space

shuttle, there may not be sufficient room available to accomodate an

additional multi-processor system. Bearing these facts in mind, it is

easy to see that it is economically unsound to use a large, general-

purpose computing system when the only function to be performed is that

of data compression [7].

Even though the tri-processor, general purpose computer, which is

proposed for the space shuttle, may not be fully loaded, it has been

pointed out in Chapter V that the coexistance of the data compression

system program with other programs which might require the full computing

capacity of the system would very possibly lead to indiscriminant loss

of important data.

It is because of the facts in this report summary that the

contention and recommendation of this report is that a special-purpose

computer (either multi-algorithm or single algorithm) be used for data

compression implementation aboard the proposed space shuttle craft.
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